Science Events About Research Courses BECOME A MEMBER Login

 

Science News
& Faculty Articles

 

DNA-guided Construction of Superconductive Carbon Nanotubes

By: William Brown, Biophysicist at the Resonance Science Foundation

The utilization of superconductive materials offers the possibility for significant technological advancement if the phenomenon can be harnessed in a cost-effective manner. The problem: most materials only enter the superconductive state under ultra-low temperatures or ultra-high pressures (see Dr. Ines Urdaneta’s RSF article on superconductivity at high pressures). Maintaining such environmental conditions are an engineering challenge and are cost-prohibitive for applications in personal-use technologies, like ultra-fast home computers and communications devices, or public infrastructure like mag-lev transit and electrical transmission (greatly reducing wasted energy and hence energy usage while simultaneously increasing feasibility of nearly perfectly efficient energy distribution).

For superconductivity to move beyond niche applications a room-temperature superconductor is required, and the quest to...

Continue Reading...

Astronomers Report Findings as Mega-telescope Delivers the First Data

By: William Brown, Biophysicist at the Resonance Science Foundation

Perhaps one of the most noble pursuits that humankind engages in is observational astronomy, borne by unbounded curiosity and the pure enjoyment that comes from viewing the wonders of the cosmos, the discovery rewards the spirit and the intellect, because when we view the Universe, we are in fact coming to better understand ourselves. To further this noble and enlightening pursuit, NASA’s Goddard Space Flight Center has successfully deployed one of humanity’s most technologically advanced “eye on the universe”, the James Webb Space Telescope—a technological marvel— with the first images having been revealed on July 11th.

 

The stated mission:
The James Webb Space Telescope (sometimes called JWST or Webb) is an orbiting infrared observatory that will complement and extend the discoveries of the Hubble Space Telescope, with longer wavelength coverage and greatly improved...

Continue Reading...

Additional Commentary on the Stimulated Unruh Effect: Studying Quantum Effects in Gravitational Fields

By: William Brown, Biophysicist at the Resonance Science Foundation

In a previous article RSF physicist Dr. Ines Urdaneta discussed a proposed study for probing the Unruh effect with quantum optics [1]. Because of the importance of experiments that will probe quantum effects in gravitational fields and to further elucidate the nature of the quantum vacuum, we will take another look at this proposed experiment and expound on some of the key insights of the study.

As Dr. Urdaneta explained in the previous article, the importance of probing the Unruh effect has to do with its relationship to quantum gravitational effects via the equivalence principle first described by Albert Einstein. Einstein is well known for his seminal work on the theory of relativity, which regards the behavior of clocks and rulers under accelerating and non-accelerating frames of reference, and the relativity of simultaneity that results from the invariance of the speed of light relative to any...

Continue Reading...

Ionization of Gravitational Atoms

By: William Brown, Biophysicist at the Resonance Science Foundation

Stellar mass black holes, like elementary particles, are remarkably simple objects. They have three primary observable properties: mass, spin, and electric charge. The similarities with elementary particles, like the proton, doesn’t stop there, as stellar mass black holes in binary systems can also form bound and unbound states due to interaction of orbital clouds (from boson condensates), uncannily analogous to the behavior and properties of atoms.  

The spin of stellar mass black holes is a particularly significant property, as black holes have rapid rotations that generate a region of space called the ergosphere around the event horizon, where the torque on spacetime is so great that an object would have to travel at a velocity exceeding the speed of light just to stay in a stationary orbit. Analysis of this region has resulted in some interesting physics predictions, one being the phenomenon of...

Continue Reading...

Convergent Function of Retrotransposons in Octopus Brain Drive Sophisticated Cognitive Capabilities

By: William Brown, Biophysicist at the Resonance Science Foundation

Compared to humans the Octopus is in many ways alien, it is an invertebrate with the only hard part being a chitinous beak, it has eight arms where most of its neuronal tissue—or brain—is located, and in many species, it can shape-shift and change the color of its integument to match its surrounding with near perfect adaptive camouflage. However, despite the many differences, many octopus species do share one similarity with that of humans: sophisticated cognitive capabilities, including problem solving, fore-thought, and creative ingenuity.

Since Octopus species have a rather large evolutionary distance from humans, mammals, or even vertebrates, a study of the cellular and molecular underpinning of their sophisticated cognitive capabilities can give us insight into what specific mechanisms enable and drive intelligence in animals. Interestingly, the molecular underpinnings of neuronal plasticity...

Continue Reading...

First Continuous Matter Wave Laser-Analog Generated from Regenerative Bose-Einstein Condensation Technique

By: William Brown, Biophysicist at the Resonance Science Foundation

Lasers are a well-known technology that have found myriad applications in all aspects of our lives, from sensors used in homes and stores, to advanced physics probes like LIGO that detected the first gravitational waves, and of course information technologies involving memory storage, retrieval, and data transmissions, to name but a few examples. Laser is an acronym for light amplification by stimulated emission of radiation, a technique that utilizes the wave-like nature of light, in which photon wave-packets that are of the same wavelength and phase (matching wave crest-to-crest and trough-to-trough, called constructive interference) can be combined and amplify the magnitude or strength of the light. The electromagnetic radiation is in a coherent state, and this is possible as well because photons obey what are known as Bose statistics, a quantum mechanical property of matter that allow Bose particles...

Continue Reading...

Mitochondria in Photoreceptor Cells Found to Focus Light and Function as an Optical Microlens

By: William Brown, Biophysicist at the Resonance Science Foundation

Mitochondria are most well known as the energy producing organelles of the cell, producing chemical energy via ATP production in all Eukaryotic species. However, mitochondria have a much broader role than simple centers of energy production in the cell and play critical roles in a range of processes from controlling cell fate via programmed cell death (called apoptosis)—central to tissue morphogenesis and anti-tumorigenic regulation— to regulating gene expression (via modulating metabolite concentrations like cyclic AMP), to name but a few of the multitudinous cellular processes involving this dynamic organelle.

Because of the ancestral nature as an endosymbiont, mitochondria are extremely active within cells and are even described as exhibiting social behaviors [1]—indicating high levels of complex information processing with intercommunication and coordination of activity [2]— so much...

Continue Reading...

Collective Molecular Resonance Key to Long-Range Intermolecular Interaction in the Cell

By: William Brown, Biophysicist at the Resonance Science Foundation

The discovery of completely new and unanticipated forces acting between biomolecules could have considerable impact on our understanding of the dynamics and functioning of the molecular machines at work in living organisms. [1]

Every second within the cells of your body there are billions of biochemical reactions taking place, including at least 130,000 protein-to-protein and protein-to-DNA interactions that are key to cellular functionality—regulating homeostasis, metabolism, biosynthesis, replication, and growth. How is this staggering level of activity coordinated in such a remarkable fashion within the cellular environment? Which as described, is quite crowded with myriad proteins, solutes, metabolites, and other biomolecules. In current models, there are no explanations for the remarkable level of coordination—the innumerable biomolecules are thought to jostle around haphazardly under...

Continue Reading...

Physicist Warns Colleagues about the Myopia of Building Another Large Hadron Collider

By: William Brown, Biophysicist at the Resonance Science Foundation
"Supersymmetry is not a tight and efficient theory, welded together to explain observations. It’s a convoluted mess of mathematical models that could potentially explain anything, or nothing at all." – Tom Hartsfield, PhD physicist and Big Think Contributor

In a new essay for Big Think PhD physicist Tom Hartsfield urges his colleagues not to build another Large Hadron Collider—a next-generation LHC++ —and delineates a number of reasons why it could end up being a colossal waste of money and yield little to no new discoveries to advance physics and our understanding of the fundamentals of Nature.

Tom Hartsfield lists a few critical reasons why it is a bad idea to build another LHC:

  • A next-generation LHC++ could cost $100 billion. 
  • The hypothetical machine could not truly test string theory. What it could discover is entirely speculative. 
  • Pursuing scientific...
Continue Reading...

Research Team Demonstrates Nonlinear Two-Level Coupling of Quantum Time Crystals

By: William Brown, Biophysicist at the Resonance Science Foundation


We first reported on the break-through observation of a time crystal in our article Time Crystals – A New Phase of Matter. Now, in the next major development, the same team who generated the new phase of matter have created the first time-crystal two-body system in an experiment that seems to bend the laws of physics.

As the name would imply, a time crystal is not an easy system to prepare and experiment with. Perpetual ground state motion in equilibrium defines a time crystal, however observing such motion is famously unfeasible, because experimentally a time crystal only achieves stability if it is isolated from the environment and the observer— shielding the pure quantum state of the system from decoherence— where either the perpetuity or equilibrium requirements can be “bent”. Much like the quantum mechanical bit, or qubit, coupling separate quantum time crystals while...

Continue Reading...
1 2 3 4 5 6 7
Close

50% Complete

Two Step

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.